1) Let $f(x, y, z)=x^{2}+y^{2}$.

$$
f_{x}=2 x, f_{y}=2 y, f_{z}=0
$$

so $d f$ is orly 0 at $(x, y, z)=0$.
So 1 is a regular value of f. Hence $f^{-1}(1)=\left\{(x, y, z): x^{2}+y^{2}=1\right\}$ is a regular suface.
2) No, we cannot conclude $f^{-1}(0)$ is not a regular surface. Consider the following example:
$f(x, y, z)=z^{2}$. Cleanly $f^{-1}(0)$ is the $x y$ plane and is a regular suffice:
But $f_{x}=0, f_{y}=0, f_{z}=2 z$.
$\Rightarrow d f$ vanishes at $(0,0,0), \Rightarrow(0,0,0)$ is a critical point of f. $\Rightarrow f(0,0,0)=0$ is a critical value of f.
So we comnot conclude the st $f^{-1}(0)$ is not a regular surface.
3) We show the ot $f: s^{2} \rightarrow s^{2}$ is a diffeomophim directly. let $p \in \mathbb{S}^{2}$. Then we find pananceterzations

$$
X: U \subseteq \mathbb{R}^{2} \rightarrow s^{2} \text { st } p \in X(u), p=X\left(u_{0}, v_{0}\right)
$$

$$
Y: V \subseteq \mathbb{R}^{2}-3 \mathcal{S}^{2} \text { st. } q=f(p) \in Y(v)
$$

sit $\left(Y^{-1} \circ f \circ X\right): U \rightarrow V$ is differentiable at $\left(u_{0}, V_{0}\right)$. Take X, Y be the standard puacmeterization for the sphere. let $u_{1}=\left\{(u, v): u^{2}+v^{2}<1\right\}$, let $X_{1}: u_{1} \rightarrow \Phi^{2}$ by $X_{1}(u, v)=\left(u, v, \sqrt{1-u^{2}-v^{2}}\right)$ and $X_{2} \cdot u_{1}-\supset \mathbb{S}^{2} b y$

$$
X_{2}(u, v)=\left(u, v,-\sqrt{1-u^{2}-v^{2}}\right)
$$

Then if p lies in the image of X_{1},

$$
\begin{aligned}
& f \circ X_{1}\left(u_{0}, v_{0}\right)=f\left(u_{0}, v_{0}, \sqrt{1-v_{0}^{2}-v_{0}^{2}}\right)=\left(-u_{0},-v_{0},-\sqrt{1--_{0}^{2}-v_{0}^{2}}\right) \\
&=\left(-u_{0}-v_{0},-\sqrt{\left.1-\left(-u_{0}\right)^{2}-\left(-v_{0}\right)^{2}\right)}\right. \\
& \text { ie } f(\rho) \text { lies in the mae a }
\end{aligned}
$$

ie $f(p)$ lies in the image of X_{2}.

$$
S_{0}\left(X_{2}^{-1} \circ f \circ X_{1}\right)\left(u_{0}, v_{0}\right)=\left(-u_{0},-v_{0}\right)
$$

Which is cleverly differentiable an a map from $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$,
Similarly, if $p \in X_{2}\left(u_{1}\right)$, then $\left(X_{1}^{-1} \circ f_{0} X_{2}\right)\left(u_{0}, v_{0}\right)=\left(-u_{0}, v_{0}\right)$ is differentiable as a map form $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$.

So f is differentiable as a map fum $S^{2} \rightarrow \mathbb{S}^{2}$.
Finally, obsove theot $f(f(x, y, z))=f(-x,-y,-z)$ $=(x, y, z)$,
so f is its an inverse. So $f: S^{2} \rightarrow S^{2}$ is a diffeomophism.
4) Let $S=\left\{(x, y, z): x^{2}+y^{2}=z\right\}$. Regarding R^{2} as a regular surface in \mathbb{R}^{3}, we show the existence of a diffeomophism Note we can pacancterize S by $X: \mathbb{R}^{2} \rightarrow S$ by

$$
X(x, y)=\left(x, y, x^{2}+y^{2}\right)
$$

Note the it the plane has trivial paccunctorization Y by

$$
y(x, y)=(x, y)
$$

let $f: S \rightarrow \mathbb{R}^{2}$ be the map

$$
f(x, y, z)=(x, y)
$$

Then $\left(y^{-1} \circ f \circ x\right)(x, y)=\left(y^{-1} \circ f\right)\left(x, y, x^{2}+y^{2}\right)$

$$
=y^{-1}(x, y)=(x, y) \text {. }
$$

which is differentiable as a map $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$.
let $g: R^{2} \rightarrow S$ by $g(x, y)=\left(x, y, x^{2}+y^{2}\right)$.
Then clearly fog $=i d=g \circ f$. So $g=f^{-1}$.
Maeaver, $\left(x^{-1} \circ f^{-1} \circ y\right)(x, y)=\left(x^{-1} \circ f^{-1}\right)(x, y)=X^{-1}\left(x, y, x^{2}+y^{2}\right)$

$$
=(x, y)
$$

which is clearly also differentiable ar a map form $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$. So fir a differmphion and S is differomophicts $\mathbb{R}^{2} \ldots$
5) We pacancterze S by $X(x, y, f(x, y)), p=\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)$. Then $X_{x}=\left(1,0, f_{x}\right), \quad x_{y}=\left(0,1, f_{y}\right)$.
Since $T_{p} S=\operatorname{span}\left\{X_{u}(p), X_{v}(p)\right\}$, we finch the equation q the tangent place by finding the nomad, ie $X_{x} \times X_{y}$:

$$
x_{x} \times x_{y}=\left(-f_{x},-f_{y}, 1\right)
$$

So the equection of the tangent plane at p, is quin by

$$
\begin{aligned}
& -f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)-f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)+\left(z-f\left(x_{0}, y_{0}\right)\right)=0 \\
& \Rightarrow z=f\left(x_{0}, y_{0}\right)+f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)
\end{aligned}
$$

as required.
Recall off q is guien by $\left[f_{x}\left(x_{0}, y_{0}\right) \quad f_{y}\left(x_{0}, y_{0}\right)\right]$
So $d f_{q}((x, y))=f_{x}\left(x_{0}, y_{0}\right) x+f_{y}\left(x_{0}, y_{0}\right) y$
and the graph of this function is queen by

$$
z=f_{x}\left(x_{0}, y_{0}\right) x+f_{y}\left(x_{0}, y_{0}\right) y
$$

Which matches the equation of the tangent plane after translating to $\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)$.

